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Definitions: Read-across

* Read-across is a method of filling a data gap whereby a chemical with
existing data values is used to make a prediction for a ‘similar chemical

* Target chemical is a chemical which has a data gap that needs to be filled
i.e. the subject of the read-across

e Source analogue is a chemical that has relevant data and has been
identified as an appropriate analogue for use in a read-across based on
similarity to the target chemical

Source | Target
chemical |chemical L to‘?((i:;tte? N
Property | o~ | 5 R A Oiu\/
® Reliable data Known to be Predicted to be
O Missing data harmful harmful



MECHA

Read-across approaches:
* Analogue approach (data from a source chemical is read across to the target chemical) ke S A i
* Category approach (from multiple source chemicals to the target chemical)

3 ways to demonstrate “similarity”:
(i) functional group,
(ii) common precursors, and
(iii) constant pattern in the changes of potency across the group

ECHA RAAF read-across scenarios:

March 2017
1. Analogue approach: Common toxicant causing same effect Read-Across Scenarios: | Inferring Hazard and Dose-
Characteristics of Anchor Response Relationships for Examples
. . d Data-S DS -5 Chemical
2. Analogue approach: Same effect caused by different toxicants N e | et Anchr et

3. Category approach: Common toxicant causing same effect,

Anchor and DS chemicals are all Hazard: Assume same :
. metabolized to same toxic Dose-Response: Adjust for pk Dz‘:;"::t mc:jta:oi:?e L
effect varies (trend) across members metabotes. o etatlits formetion ethoxybencidine

Anchor and DS chemicals have

4.Category approach: Same effect caused by different toxicants, iR G | I e
N and bioactivity of metabolites sets of nitrosoamines
effect varies (trend) across members ‘

hazards.

Anchor and DS chemicals have Hazard: Assume same Dioxin-like compounds

5.Category approach: Common toxicant causing same effect, Nl | IR

bioactivity

effect does not vary across members

6. Category approach: Same effect caused by different toxicants,
effect does not vary across members

National Academies Report [2017]: Using 21st Century Science to Improve Risk-Related Evaluations



Tab. 1: Reasons for the rejection of the use of read-across in disseminated compliance check decisions published
on the ECHA website by July 31, 2015

Reason for rejection No. of cases

Unclear substance identity, not possible to ascertain structural similarity

— A significant issue for UVCB substances with a severe impact on large UVCB categories using a
combination of read-across and targeted testing 48

Lack of sufficient evidence to substantiate assumptions made within read-across justifications
— Including lack of data on analogues provided in dossier 43

Read-across to inappropriate data

— For example read-across to a reproductive screening study to address higher tier reproductive and
developmental study requirements 5

Lack of scientific plausibility

— Disagreement with hypothesis, data not supportive of arguments presented, too much uncertainty
— This often combined with the lack of sufficient evidence/information 20

http://dx.doi.org/10.14573/altex.1601251

“Nonetheless, since registrants have made extensive use of alternative methods and
adaptation possibilities provided in REACH Annexes VII-XI instead of providing data from
experimental studies, verification of the compliance of dossiers in the highest tonnage
bands will still require sustained effort over the next years. In particular, adaptations
based on read-across and weight of evidence are often poorly documented and justified,
and are not acceptable.” Report on the Operation of REACH and CLP 2016
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Using 215t Century Science in Decision-Making:
Defining the Areas of “Fit for Purpose”

Priority-setting: Can be based on hazard, exposure, or risk

Assessment of mono-constituent chemicals: Can be included in
traditional chemical hazard and dose-response assessments of various
regulated substances, such as pesticides, drugs, and food additives

“Site-specific” assessments: Can involve selection of geographic sites or
chemicals/mixtures at a contaminated site

Assessment of new and complex chemistries: Can involve assessment of

green chemistry, new and complex substances, and unexpected

environmental degradation products of chemicals in commerce
http://dels.nas.edu/Report/Using-21st-Century-Science-Improve/24635




Priority-setting

“Margin of safety”

Toxicity data
streams

Exposure data
streams

In Silico:
QSAR, SAR,
or Read-

Measured:
Direct (e.g.,
blood)

Predicted:
Multimedia

Probability Range for Exposures
Probability Range for Effect Levels

Measured: (e.g.,
Indirect (e.g., Zebrafish
environment) assay)

Concentration

http://dels.nas.edu/Report/Using-21st-Century-Science-Improve/24635




Assessment of mono-constituent chemicals

Animal-Based Approach

; 4
Animal DgsE- PK. PD Health A
o Response !
Toxicity > [ POD >| Reference
Model or Apply
Data UFs to Account for Va I ue
s . J
Variability and
Uncertainties
Tox21 Concept
Concentration- Reverse £ Health
. Dosimet
In vitro SRR POD ST | Reference
Battery Model or Apply Value
UFs to Account . J

for Variability and
Uncertainties

http://dels.nas.edu/Report/Using-21st-Century-Science-Improve/24635




Assessment of mono-constituent chemicals

Animal Toxicity Dose-
Data on Response
Appropriate
Analogue
N

Identify analogues on the basis of
e Similar chemical structure Adjust on the basis
e Similar physicochemical of pharmacokinetics
properties of chemical of
e Common metabolism interest and
e Common key events biological activity
® Similar gene expression

Model or Hea |th
Apply UFs
Chemical of PO DADJ > Reference
Interest Value

http://dels.nas.edu/Report/Using-21st-Century-Science-Improve/24635




“Site-specific” assessments

Site of Interest Exposure Hazard & Dose-Response Risk Decision
Identify
T:;:Ie;;sd —>  Characterized
Chemicals
Soil, Water, Air, Hazard and Exposure
Food, Crops Dose-Response —> Risk Assessment —> Intervention,
) Assessments Cleanup, Other
Nontargeted Ident|fy-
Rnalysis Uncharatfterlzed
Chemicals
N

Identify Bioactive
Chromatographic —

Features

Collect Toxicity
Data

Identify Exposures
5 of Interest from —
EWAS or Epi Study

http://dels.nas.edu/Report/Using-21st-Century-Science-Improve/24635




Use of a “Mechanistic Class” for Cancer Hazard ID

i International Agency for ¢ ClaSSES can be dEflned by d

. Research on Cancer (IARC)  single common agent

Monographs Program

‘ {,, evaluates causes of human o -

(L . cancer (hazard identification) * Mechanistic class can be defined
s by similar biological activity

Evidence in Evidence in AEEEI * Vinyl halides; PCBs; Air pollution

humans animals evidence

l

Overall evaluation

* Dyes metabolized to benzidine

* Mechanistic data alone can be
used as a basis for classification

OGroupt  Carcinogenic to humans * Using Key Characteristics of
[J Group 2A Probably carcinogenic to humans . ..
[0 Group 2B Possibly carcinogenic to humans Ca r'cin Oge NS asano rga NIZI ng
[ Group 3 Not classifiable . .

principle

@ ‘ VETERINARY MEDICINE https://monographs.iarc.fr/cards page/preamble-monographs/

& BIOMEDICAL SCIENCES
TEXAS A&M UNIVERSITY




“Read-across” of Haloacetic acids for Cancer Hazard ID

Mono-haloacetic acids e Example from NTP Report on Carcinogens
MCA MBA MIA
5 g b . 9 * Goal: establish carcinogenicity hazard for a
_{H ‘< { chemical class using “new approach data”
Di-haloacetic acids . . . .
DCA DIA e Structural similarity for HAAs is well known
> ( > ( > (  Variety of in vivo, in vitro, and in silico data,
o/ o o o £ o including use of Key Characteristics of
BCA CIA BIA . . . .
Carcinogens to organize mechanistic data
>_< >—< >—< * Challenges:
Tri-haloacetic acids * Lack of clear trends, or a common MOAs
oA . « Conclusions only reached on HAAs
M M M H metabolized to common moiety that is
o/ om o/ on ol on of  on already “reasonably anticipated to be a

human carcinogen”

@ ‘ VETERINARY MEDICINE https://ntp.niehs.nih.gov/ntp/roc/monographs/haafinal 508.pdf

& BIOMEDICAL SCIENCES
TEXAS A&M UNIVERSITY



Read-Across in Risk Assessment by US EPA: A “Tiered Surrogate Approach”

Repulatony Toxicology and Pharmacology 63 (2012 10-19

Contens lists available at SciVierse ScienceDirect

Regulatory Toxicology and Pharmacology hoiraey

il

journa I'h page: www.elsevier.com/ locate/yriph -

Target Chemical

Application of computational toxicological approaches in human health risk
assessment. I. A tiered surrogate approach

Nina Ching Yi Wang™*, Q. Jay Zhao, Scott C. Wesselkamper®, Jason C. Lambert*, Dan Petersen®,
Janet K. Hess-Wilson

“ National Cester for En ol Assexsment, U5 Enviromsental Preection Agency. 26 Wiest Martim Lither King Drive, Ceacinnari, OH 45268, Unired States
LIS Alir Force Center for ing and the Enviremment, Technical Division, Restoration Branch, 3515 & Genersd McMullen, San Antonio, TX 78226, United Seates

“...the Superfund Health Risk Technical
Support Center [may use] available
information in an appendix and develop a
“screening value.” Appendices receive the
same level of internal and external scientific
peer review as the PPRTV documents to
ensure their appropriateness within the
limitations detailed in the document. Users
of screening toxicity values in an appendix to
a PPRTV assessment should understand that
there is considerably more uncertainty
associated with the derivation of an
appendix screening toxicity value than for a
value presented in the body of the
assessment.”

v
Proceed with risk assessment using | YES | Are there appropriate in vivo data NO
chemical-specific data ' in humans or animals?

Is there a known major
toxic moiety
responsible for the
ultimate toxicity?

YES | | o

v

Search for chemicals based on primary similarity contexts : 1) Struct

ure, 2)

Toxicokinetics , 3) Toxicodynamics

Select analogues with existent health reference values

l

gaps and areas of uncertainty.

Collect relevant information (structure, physicochemical properties, ADME,
toxicity and MOA) on the target and analogues and evaluate for consistency and
coherence (e.g. target organ, endpoint, metabolism pathway), identifying data

l

or RPF approach in the context of a chemical category or mixture

Select suitable analogues based on: 1) similar biological response, endpoint, toxic
effect or MOA; 2) metabolites, precursors or similar metabolism pathway; 4) TEF

i

Select source analogue and adopt POD for
screening-level assessment of target chemical




Read-Across in Action: Case Study of n-Heptane (US EPA PPRTV Program, 2016)

(2} m}m' mmmmmmm
Frenmeraal Frotection
7 Kgency

n-Heptane
{CASRN 142-82-

5)

Provisional Peer-Reviewed Toxicity Values for

N-Nonane Oral 90 day study
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“...the database for continuous
exposure to n-Heptane is inappropriate
for the derivation of provisional oral
toxicity values. However, information is
available for this chemical, [thus] a
“screening value” [can be derived]”

n-Heptane

°~J
°~J

n-Hexane

/W

°~J
~J

n-Nonane

P N NP N

Screening Subchronic p-RfD = Surrogate POD + UFc

= 3.13 mg/kg-day = 1,000
(For n-Hexane!) ~ 3% 10_% mgg,kg_day

* Similarity Context 1: n-Hexane and n-

Nonane are compounds that have high
structural similarity to n-Heptane
(>84%)

Similarity Context 2: n-Nonane is
metabolized in vivo similarly to n-
Heptane (higher relative amounts of
the 2-and 3-alcohol and g-valerolactone
metabolites formed, compared to the
neurotoxic g-diketone compounds from
n-Hexane candidate analogue)

Similarity Context 3: n-Nonane-induced
proliferative forestomach lesions are
similar to the lesions observed after
oral n-Heptane exposure (as compared
to unique n-Hexane induced
neurotoxicity)



Read-Across in Action: Case Study of p,p’-DDD (US EPA PPRTV Program, 2017)

SEPA it soreion ERAGYOR- 171006
09-20-2017

Provisional Peer-Reviewed Toxicity Values for

p.p-Dichlorodiphenyldichloroethane (p,p'-DDD)
(CASRN 72-54-8)

g ACSOGM)

P.p-00D P.p"-DOT p.p"-DDE Methoxychlor

Similarity Context

Structure and
physicochemical
properties

Toxicokinetics

Toxicodynami

Summary of Findings

p.p-DDD and identified analogues (p,p-DDT and p,p-DDE and
methoxychlor) demaonstrate similarities in basic structural features
(chlorinated diphenylalkane structure)

p.p-DDT and p,p-DDE also share key functional groups (p,p~chlorine
substituents) and physicochemical properties important for
bioavailability (lipophilicity and low BCF values) with p,p-DDD

p,p-DDT is a metabolic precursor of p,p-DDD and both chemicals
show similarities in toxicokinetics (Absorption, Distribution and
Metabolism [ADME]) in humans and experimental animal models
(preferential partitioning into fat, similar metabolism and excretion
pathways and prolonged elimination rates)

Other analogues demonstrate differences in ADME in comparison to
the target. p,p™-DDE is less metabolically active; methoxychlor is
metabolized differently and appears to be less bioaccumulative

Consistency and coherence across health effects in experimental
animals for non-cancer oral toxicity among the analogues point to
putative toxicity targets for p,p-DDD (primarily liver and reproductive
toxicity)

Similarities in in vitro bioactivity profiles from ToxCast assays between
the target and analogues with respect to cell-specific responses and
target gene pathways provide mechanistic plausibility for the liver and
reproductive effects associated with this group of chemicals




Combining chemical descriptors and bioassays

127 dru

o‘ ' )
e .
ll J l - Toxicogenomics assays

(24h)
- '
v"" - j/’
G o , 4

Aim: to predict hepatotoxicity from
chemical structures and bioassays

% %

Chemical descnptors

Toxicogenomics
models

~70% accuracy
(Uehara 2010)

Hepatotoxicity
(28 day) Low et al. (2011) Chem. Res. Toxicol. 24, 1251-1262



Results: QsAR <

models

Data source:

Chemical descnptors

304 Dragon
descriptors

Hybrid models

68- /5%
QSAR
models

55-61%
AcCC

Hepatotoxicity

4 classification methods (28 day)

(RF, SVM, kNN, DWD)

Hybrid <
models

accuracy Toxicogenomics

Toxicogenomics
models

TG P2 Toxicogenomics Informatics Project in Japan 2‘"
g

Toxicogenomics expression
(24h)

2,923 genes

Rank by
differential
expression |

Top 400 genes

V 4

Top 100 genes

models

69-78%
AcCC

Top 30 genes

Top 4 genes

Low et al. (2011) Chem. Res. Toxicol. 24, 1251-1262



Chemical-Biological Read-Across (CBRA)
allows visual comparison of multiple compounds

CHLORAMPHENICOL TERBINAFINE BENZBROMARONE
Agreq= +0.157 Agreq= +0.365 Aproa= +0.688

Biolegical Chemical
neighbors,

(toxu:)

neighbors

<+——— Prediction by biological similarity ————>
AN

*

similarity $0.6

CARBAMAZEPINE TICLOPIDINE SULINDAC
Agreg= -0.099 Agreg= +0.153 Aee= +0.445

QUINIDINE VALPROIC ACID FAMOTIDINE
Aprea= -1.00 Apreq= -0.286 Agrea= -0.591

(non-
toxic)
-1

-1 (non-toxicje=— Prediction by chemical similarity —» (toxic) +1

Low et al. (2013) Chem. Res. Toxicol. 26(8):1199-208.



Use of connectivity mapping and genomics to support read across

 Test 100s of chemicals in many in vitro cells
* Collect high-throughput gene expression data

* Find chemicals that are best “analogues”
CMap Score

8 Bisphenol A
. Genistein
!s = Ethinyl-estradiol
e Trenbolone
° -

4 0 1 ANIT
Y Nicotine
Imidacioprid

Estrogen
Androgen
Liver cholestasis inducers

=
Wﬁgg&ﬁgwﬁfwfy
A W&%f%f egf%‘g i

gﬁ’ & GIIPEE, - % = PPAR agonist
éf{é‘% f # = FXR recep?gro:gonlm

& = HDAC inhibitors
S » Singletons

DeAbrew et al Tox Sci 151 (2016) 447-461

Alkyl Phenol Case Study

M-Ethylphenol M-Cresol 4-Propyl Phenol 4-Ethyl Phenol 4-Methylbenzyl alcohol

@¢E€§[§

620-17-7 108-39-4 123-07-9 589-18-4

Suitable

Target Source Substance Not suitable for
Substance Read across
Diaminobenzene Case Study
4-Chloro-1,3- 4-Chloro-1,2- 2-Chloro-1,4- 3-Chloro-4- 4-Chloro-2- 1-Chloro-4- 1-Chloro-2-
diaminob diaminob diaminob sulfate methylaniline  Methylaniline hydrochlorid itrob itrob e
Ny oy oy, oy oty a a
NHy oM h NO;
g e -
INHy a L
NH, NH, NOy
5131-60-2 95-83-0 61702-44-1 95-74-9 3165-93-3 100-00-5 88-73-3
T T T
Target Source Substance Not suitable for
Substance

Read across

DeAbrew et al Toxicology 423 (2019) 84-94



US EPA’s GenRA v1 — Approach

l. Data Il. Define Local I1l. GenRA

1,778 Chemicals neighborhoods

3,239 Structure descriptors (chm) Use GenRA to predict toxicity

820 Bioactivity hitcall (bio) Use K-means analysis to effects in local neighborhoods

ToxCast group chemicals by similarity E\-/alu?'te.timdpact pftstructural gptz_/or
- Use cluster stability analysis loactivity descriptors on prediction

574 toxicity effects (tox) ToxRefDB ~ 100 local neighborhoods Quantify uncertainty

CHR SUB MGR

Bone Marrow * = . . . . - Fovmeesbunmnned S —

Lyrmph Node
Htuna%eland
Vs

Pancreas
Mammary Gland
Urinary Bladder

Epidicymis
Intestine Small

Blog

mw

Bone
Intestine Large
Gland
Skeletal Muscle

Gallbladder
Seminal Vesicle
Salivary glands
Harderian Gland
Spinal cord
Trachea

Blood vesse!
Parathyroic
Vagina

Gral Mucosa

|
Lacrimal Gland |-

v
Coargination -
Larynx -
Placenta |-
Refiexes |-
Ureter

)

100
200
300 |-
400
500
600

Slide courtesy of Dr. Grace Patlewicz (US EPA) Shah et al. Regul Toxicol Pharmacol. 2016; 79:12-24



https://comptox.epa.gov/dashboard/

(s ) United States
S Environmental Protection  Home  Advanc
’ Agency

.|Terfenadine
50679-08-8 | DTXSID2023642

Searched by DSSTox Substance Id.

Generalized Read-Across (GenRA)

Step Three: Run GenRA Prediction

Maighbars by: Chem: Margan Fgrprts & Filtar by: mvavo data w [i] Summary Data Gap Analysis o Group: Torfel W By: Tox Fingerprint % m o
a a

CHI Abdomnine] Cavity

CHR:Adrenal Gland

o ceoe) [

E— L5 —— ¥ CHR Bile duct --
P LITERATURE asablid
- p—
\ Cypeneanareie B )
C / \ CHR Bagy Weight -.
CHRBane --
2 Phenylapan

Fe zole g
=, Cumyhaon CHR:Bone Marrow --
Benctimhionde
# of Analogs | 10 - Prepgte m CHR:Bronchus ..

SenRA W Mins: 0 ™ Min: ¥ Filter: Similarity Weight: Download: Fiutype & 0
100 & nar 018 018 018 018 018 017 017+ 17 017
> ot
Tetfenadine (2R §5) Fenpo._. Fenbulskin cide  Volnansenn Cumyhaon ropang Benookichioride 2 Phenyipropa.. SSAIS0106  Fenbuconazole

CHR:Adrenal Gland

ALTEX. 2019 Feb 4. doi: 10.14573/altex.1811292. [Epub ahead of print]



“Exploring drug space Wlth Ch em I\/Iaps com” Chemical space: a complex compendium of 1D, 2D and

3D pre-computed molecular descriptors to generate
Explore large chemical space Select neighborhood Explore chemical neighborhood Connect chemicals on the map th e C h e m ICa | S pa Ce I n th ree d I m e n S I O n S

Web interface: an interactive, mouse-based, easy-to-
use navigation in any internet browser on mobile or
computer platforms

Navigation options: Inspired by Google Maps

Drugbank Version DSSTox Release
5.1.2, release 2018- 2019-3-09
12-20 > 800,000 entries
~12,000 entries

Proposed Applications of ChemMaps:

* Users can search, mine and explore [the] library of
drugs as easily as they would look at a city map.

* [Could] open new perspectives for drug repurposing,
e.g. by directly visualizing the proximity and
structure similarity between two drugs being very
close in the drug space.

Borrel et al Bioinformatics, 34(21), 01 November 2018, Pages 3773-3775



CTV
ToxVaIue.org Conditional Toxicity Value

An In Silico Approach for Generating Toxicity Values for Chemicals

Step 1:

. Enter
Animal = ) = Compound
toxicity data Q' Wignall etal., 2014 8 Pham etal., 2019 (In prep.) |.S Watford et al., 2019 (In prep.) P ul
€ - Collected 880 dose- | == - BMDS Python Interface | & = Extracted additional Information
’v 8 response datasets § and Web Server ﬁ quantitative dose-response
“Toxici ty = for 352 Lllmqqe = . Large public datasets can a data from ToxRefDB animal
. 2 gh‘?m,fa\j’ lwuth o be efficiently modeled for | <C studies Step 2:
Value o (:)SC' éfDa UOES(,S:)) S predictive toxicology @ * Applied Python BMDS p <
O L= z b= = H H
= i o ° Python BMDS users can + More than 28,000 datasets for Verify Chemical
[RegUIatory] o d;tSaO/s,neg E‘;’Legt:d = customize BMDS version E over 600 chemicals N y d
- elod vith BMDS ®  and model L, successfully modeled ame an
v modeled wi < recommendation logic Structure
Prediction of Batch-calculated [
BMD/Ls available for
a Regulatory over 300 chemicals >

Step 3:
Look Up Toxicity

Value

—— . e Values or Make
Toxicity value type Toxicity value name with a toxicity value ease select a loxicily value of interest. Predictions
Reference Dose (RD) - Select Al
[ CTv Reference Dose (RTD) (Chembench models: 67612 and 70526
SR No Observed Adverse Effect Level (NOAEL) 487 - (RID) (Chembench modes o !
ANty ] CTV Reference Dose (RfD) NO(A)EL (Chembench models: 67624 and 66226) Ste 4-
eSS Benchmark Dose (BMD)* 137 . p4a:
I CTV Reference Dose (RfD) BMD (Chembench models: 67570 and 70508)
Benchmark Dose Lower Level (BMDL)* 137 -
( ) [ CTV Reference Dose (RfD) BMDL (Chembench models: 67582 and 66214) Export ReSU|ts
izl Slope Factor (0 38) 302 [ CTV Reference Concentration (RTC) (Chembench models: 67600 and 70520) (including
cancer B . -
Cancer Potency Value (CPV) 225 ) CTV Oral Slope Factor (OSF) (Chembench models: 67588 and 70514) app licabil Ity
exrlir;:ila.::;(onr;n- Reference Concentration (RfC) 152 [l ¢Tv Cancer Patency Value (CPY) (Chembench models: 67534 and 70490) domai n)
cancer and cancer) Inhalation Unit Risk (IUR) 150 ) CTV Inhalation Unit Risk (IUR) (Chembench models: 67545 and 70455)

Wignall et al. Environ Health Perspect. 2018 126(5):057008



[
>
Q

|

et
o

b

Ll
o

4

©

0
it

=

&

Read-Across Example Using ToxValue.org

Diethylene glycol ethers (Di EGESs)

Chemical
Diethylene glycol ethyl ether Diethylene glycol Diethylene glycol hexyl ether
(DGEE, CAS 111-90-0 ) monobutyl ether (DEGBE, (DGHE, CAS No. 112-59-4)

OH CAS 112-34-5) H
o/_/ J_({_} H, e NN NN NN

O
H3c—/ kgc-/_f
NOAEL: 167 mg/kg-day based = NOAEL: 50 mg/kg-day for 2
on kidney and liver effects in anemia in rats -
pigs
Dose Incidence Dose # Mean SD |:> 50 mglkg-day
0 0/3 0 10 9.27 | 0.35
167 0/3 50 10 9.13 | 0.22 1
500 1/2 250 | 10 | 894  0.34 167 mg/kg-day
1117 11 1000 10 8.53 | 0.31

Diethylene glycol propyl ether
(DGPE, CAS 6881-94-3)

Ho/\/o\/\o/\/c H,

?

50 mg/kg-day

!

167 mg/kg-day

25
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Read-Across Example Using ToxValue.org
Diethylene glycol ethers (Di EGESs)

Chemical
Diethylene glycol ethyl ether Diethylene glycol Diethylene glycol hexyl ether Diethylene glycol propyl ether
(DGEE, CAS 111-90-0 ) monobutyl ether (DEGBE, (DGHE, CAS No. 112-59-4) (DGPE, CAS 6881-94-3)

OH CAS 112-34-5) H
O/—’ J_f} NN AN
H3c—/ H,C

NOAEL: 167 mg/kg-day based NOAEL: 50 mg/kg-day for 2 o)
on kidney and liver effects in anemia in rats . .

pigs t
50 mg/kg-day 50 mg/kg-day
BMD 443 mg/kg-day BMD 222 mg/kg-day 1 1

BMDL 45.2 mg/kg-day BMDL 81.4 mg/kg-day
167 mg/kg-day 167 mg/kg-day



Diethylene glycol hexyl ether

Toxval ue_org Output (DGHE, CAS No. 112-59-4)

H’C/W\o/\/o\/\op!
Chemical name Model Name LInit redictionl ower 95% |Upper 95% JAppl Domain f=
-LoggMoli(kg-da 3.36 1.36 5.30
CTV Reference Dose (RMD) Bmp [-2310Mol(kg-day) 0453
CEE2 mg/(kg-day) 83.2 0.960 8.29e+3
-LogygMoli(kg-da 3.69 1.91 o.41
CTV Reference Dose (RMD) BupL [-2d10Mol/(kg-day) 0453
mg/(kg-day) \ 266 0.739 2.33e+3

.

Z-score output: Distance from your chemical to the nearest chemical in training set
compared to the average nearest-neighbor-distances in the training set

+ 0 = same distance as average distances in the training set

« >0 = your chemical is at a further distance than average distances in the training set
« <0 = your chemical is at a closer distance than average distances in the training set

anything < cut-off as within AD of model).

Use Z > 1 as a conservative cut-off for applicability, Z > 3 as a less-restrictive cut-off (to define
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Read-Across Example Using ToxValue.org
Diethylene glycol ethers (Di EGESs)

Chemical
Diethylene glycol ethyl ether Diethylene glycol Diethylene glycol hexyl ether Diethylene glycol propyl ether
(DGEE, CAS 111-90-0 ) monobutyl ether (DEGBE (DGHE, CAS No. 112-59-4) (DGPE, CAS 6881-94-3)
OH CAS 112-34- 5)
o/_/ H,C? NSNS0 o/\/o\/\ o/\/CH
|-|3c—/ H,C
NOAEL: 167 mg/kg-day based NOAEL: 50 mg/kg-day for 8290 . 19,700
on kidney and liver effects in anemia in rats
. BI\/ID (mg/kg) BMD (mg/kg)

pigs
76.3

BMD@43mg/kg-day BMDBQ222mglkg- day
BMDL 45.2 mg/kg-day BMDL 81.4 mg/kg-day
] 2330 4610

BMDL (mg/kg) BMDL (mg/kg)
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Reflections on single-chemical read-across

* Metabolism is often easiest way to define a “class”

e Common mechanisms have worked for a few well-established
classes (dioxins, PCBs, PAHSs, etc.), but may be more difficult to
generalize to other “classes” (e.g., HAAS)

* “Key characteristics” approach may be helpful to organize
mechanistic data

* Decision-context-specific questions
* Hazard or dose-response?
* Do we need an “-icity”?

* Do we need to bring in other components such as physical-chemical
properties, persistence, bioaccumulation?
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Sufficient Similarity Challenge in Read-Across:
From Case Studies to Application

* Defining “sufficient”: Depends on who (which agency) you ask...

e Defining “similarity”: It is clear that structure-based similarity alone is
insufficient, if you ask the regulators (especially in Europe)

* So if one’s “sufficient similarity” argument is not accepted, what then?

* Are “case studies” the way forward? Yes and no, because some
regulators are very inpatient and deem “case studies” to be just
another “delay tactic” by the industry...

* There are no easy answers but there is no alternative to more work in
this area — publication of “case studies” is a path to acceptance



