

► PFAS於放流水與飲用水 國際管制趨勢及國內現況與展望

簡報者:水質保護司李美慧科長

中華民國112年12月20日

簡報大綱

02 國際PFAS水質管理及規範

國內廢污水及飲用水中PFAS調查

01前言

全氟烷基物質和多氟烷基物質(PFAS)

資料來源: https://reurl.cc/z6j6qV

前言

- □ 特性:高度穩定性且持久性存在的物質,被稱為 「永久化學物質」
- □ 優點:防潑水、抗污、耐熱、耐磨
- □ 常用於防水衣物、滅火泡沫、化妝品、廚具、包裝、 阻燃劑、防污劑等產品
- □ 可能導致健康問題,如:癌症風險增加、代謝問題、 免疫抑制、生育能力下降等
- □許多國家已經開始限制和監管

前言

02國際PFAS 水質管理及規範

國際廢污水PFAS管理管制動態(1/2)

- 目前各國尚未將全氟化物納入放流水標準管制(美國規劃中)
- 國際環保規範及產業聯盟已推動源頭化學品減量及替代

藍色標誌標準 (bluesign® Standard)

- 產品符合環保、健康、安全
- 化學品認可標準
 - -藍色(可符合所有標準與要求)
 - -灰色(僅於特定狀況下使用)
 - -黑色(不符合標準與要求)
- 訂定限用物質清單 (RSL)
 - -將含有禁用物質的原料或化學成份 排除於製程

有害化學物質零排放聯盟

(Zero Discharge of Hazardous Chemicals, ZDHC)

- 訂定生產限用物質清單 (MRSL)
 - 以紡織品和合成革加工製程為例,原材料或產品供應 商不得有意使用PFOA和PFOS等物質
- 擬定廢水指南 (Guidelines)
 - MRSL訂有**報告限值 (Reporting Limit)**, PFOA和 PFOS均為0.01 μg/L
- 數據公開與揭露
 - 若檢測數據超過報告限值,工廠應推動改善行動計畫

國際廢污水PFAS管理管制動態(2/2)

- 美國環保署2019年擬定PFAS行動方案 (Action Plan)
 - 規劃納入NPDES水污許可管理,累積數據後,評估訂定水質品質標準
- 美國2021年發布多行業PFAS研究報告,2023年發布「15號放流水指引規劃」, 說明PFAS管理策略方向

現況及調查結果

管理策略

有機化學品、塑膠和合成纖維業 (OCPSF)

- 許可大多僅規定PFAS監測,未訂排放限值 (3M某廠亦被要求特定廢水須經活性碳前處理)
- PFAS製造廠放流水PFOA和PFOS最大檢出濃度分別為430和21.2 μg/L

擬 訂 管 制 限值,解决PFAS排放問題

金屬表面處 理業 (鍍鉻製程)

- 許可未見PFAS監測及排放限值規定
- 鍍鉻工廠廢水PFOS最高檢出濃度為240 μg/L
- 自2015年起逐步淘汰PFOS重量百分比高於1%之鉻霧抑制劑,目前估計約有50%鍍鉻廠仍有使用含PFAS之鉻霧抑制劑

擬 訂 管 制 限值,解决PFAS排放問題

<u>持續調查垃圾掩埋場、紡織業、公共污水處理廠、紙漿及紙製品、機場排放PFAS情形</u>

國際飲用水PFAS管理管制動態(1/2)

■ 目前國際上僅丹麥、紐西蘭及歐盟針對飲用水中PFAS進行管制,其他國家則訂定健康建議或指引值。

) - 72	Ŀ規管制值 (μg/l	L)	健康建議/指引值 (μg/L)			
	PFOA	PFOS	PFHxS	PFOA	PFOS	PFHxS	
美國 (2016)	1	1	-	0.	07	-	
丹麥 (2015)		0.1 (Σ12項PFAS)	-	1	-	
紐西蘭 (2022)	0.56	0.0	07	-	-	-	
澳洲 (2018)	ı	ı	-	0.56	0.0	07	
日本	ı	ı	-	0.	-		
加拿大 (2018)	ı	ı	-	0.2	0.6	-	
英國 (2021)	1	1	-	Tier 2: 0.01 Tier 3: 0.1 Tier 4: 1	Tier 2: 0.01 Tier 3: 0.1 Tier 4: 1	-	
歐盟 (2020)		otal PFAS: 0.1 PFAS: 0.1(Σ20				-	
德國 (2006)	-	-	-	0.3	0.3	-	
瑞典	-	-	-	0.09 (Σ11項PFAS)			

國際飲用水PFAS管理管制動態(2/2)

■ 美國環保署於2016年提出健康建議值為PFOA+PFOS<0.07 μg/L;2023年3月14日提案訂定PFAS國家飲用水標準,初步規劃列管6項PFAS,於5月30日截止徵詢公眾意見,預計於明年初定案。

	提議的MCLG	提議的MCL (可執行級別)	我國管理現況	
全氟辛酸(PFOA)	0	0.004 μg/L		
全氟辛烷磺酸(PFOS)	0	0.004 μg/L	觀察清單	
全氟己烷磺酸(PFHxS)				
全氟壬酸(PFNA)	10(無器位)	10(無器位)		
全氟丁烷磺酸(PFBS)	1.0(無單位) 危害指數	1.0(無單位) 危害指數	有本土淨水場清	
六氟環氧丙烷二聚酸(HFPO-DA) (通常稱為 GenX 化學品)			水調查結果	

Note: MCLG: Maximum Contaminant Level Goal; MCL: Maximum Contaminant Level

危害指數HI (hazard index) = $\sum_{i=1}^{4} \frac{C_{m,i}}{C_{s,i}}$; $C_{m,i}$ = 測值;標準值 $C_{s,i}$ = 10; 9; 2,000; 10 ppt

國際PFAS水處理技術

■ 目前較具實廠規模技術包括活性碳吸附、離子交換樹脂、逆滲透及奈米過濾等

活性碳吸附

- 易於擴充
- 長鏈全氟化物吸附效果較好,短鏈全氟化物較易飽和
- 原水有機物含量高抑制全氟化物去除

離子交換樹脂

- 需加裝設備,可設計去除特定全氟化物
- 原水高濃度陰離子會抑制全氟化物去除
- 樹脂再生可重複利用

薄膜分離 (逆滲透)

- 需加裝設備,可設計去除特定全氟化物
- 去除效率高
- 濾液中懸浮固體、鹽類、金屬可能導致膜污染

03國內廢污水及飲用水中 PFAS調查

國內廢污水PFAS調查結果(1/4)

產業

高科技產業 (半導體業等) 化工業 (助劑商)及印染 整理業、紡織業、製革業 金屬表面處理業電鍍業

全氟化物主要來源

製程使用之光阻劑

撥/潑水劑、防水性塗料

硬鉻電鍍製程使用之 鉻霧抑制劑

措施

源頭化學品替代

- 更換含PFOS光阻劑
- 逐步<mark>替代</mark>含PFOA化 學品
- 撥/潑水劑多調整為C6、C4 或無氟類型
- ·部分事業已取得bluesign® 認證,且加入有害化學物質 零排放聯盟(ZDHC)

製程改善

- 部分硬鉻製程廠商採密閉 式鍍槽搭配抽風設備減少 鉻氣逸散
- 仍有部分廠商使用鉻霧抑制劑 (含全氟化物),其廢水PFOS濃度高於採用密閉式鍍槽者達數百倍以上

添加鉻霧抑制劑之鍍鉻槽

國內廢污水PFAS調查結果(2/4)

- 事業自主管理
 - □ 化學品替代與減量
 - □ 取得bluesign®認證

半導體業

99年

完全停止使用含PFOS化學品

104年

完全停止使用含PFOA化學品

台灣積體電路製造股份有限公司

110年

製程使用之光阻劑已完全不含8個碳氟鏈及以上的PFAS;研發中先進製程所使用的光阻劑亦完全不含大於4個碳氟鏈的PFAS

112年

目前僅采鈺公司製程所使用的部分光阻劑含有大於4個碳氟鏈的PFAS (即C6之PFHxA),預計於民國112年年底完成替代

紡織、化工業

- 宏遠興業、東隆興業等紡織業及台灣日華等化工業已取得bluesign®認證
- 宏遠興業2016年已汰換C8撥水劑,改用C6撥水 劑及無氟撥水劑

國內廢污水PFAS調查結果(3/4)

■ 國內廢污水PFAS調查結果和國外調查結果相符

	調查年度	2010	2011~2016	2017	2019/2020	2022/2023	國外調查結果
	高科技產業(科學園區)	ND~4.60	ND~0.103	ND~0.007		ND~ 0.146	
	印染紡織				ND~0.0243	ND~ 0.0185	澳洲ND;中國0.0031~0.0087
	化工				ND~0.0324	0.00381/0.00532	美國6.047 (塗料)
PFOS	造紙				0.0731~3.51		澳洲0.091;美國0.020~>0.150
	製革				ND~0.0208		
	電鍍、金表				0.0109~744	0.503~97.1	澳洲0.044~8.410;芬蘭 1,400~18,000;韓國 0.034~0.550;美國0.016~240
	高科技產業(科學園區)	ND~3.76	ND~0.687	0.012~0.042		0.00220~0.0402	
	印染紡織				ND~0.244	0.0328~6.57	中國0.130~0.140;韓國0.026~ 0.730
PFOA	化工				ND~0.795	0.520/1.72	
	造紙				ND~0.00170		澳洲0.064
	製革				ND		
	電鍍、金表				ND~0.00894	0.00143~0.0210	芬蘭0.027;中國4.566

註:濃度單位為 $\mu g/L$,調查點為包含原廢水、放流水或納管水。

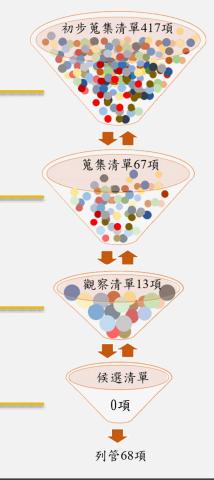
國內廢污水PFAS調查結果(4/4)

■ 近兩年調查多項PFAS,廢污水全氟化物檢出濃度最高者為PFOS (最高檢出濃度可達近百μg/L),其餘C4~C9全氟化物最高檢出濃度約為數μg/L;而長碳鏈全氟化物 (C10~C14)最高檢出濃度則低於1μg/L

	2022年計畫調查結果 (n=21)				2023年計畫調查結果 (n=23)			
檢測項目	方法偵測 極限 (μg/L)	最高檢出 濃度 (μg/L)	最低檢出 濃度 (μg/L)	檢出 頻率 (%)	方法偵測 極限 (μg/L)	最高檢出 濃度 (μg/L)	最低檢出 濃度 (μg/L)	檢出 頻率 (%)
全氟丁酸(PFBA)(C4)	0.00117	1.36	0.00428	100%	0.00155	0.942	0.00511	100%
全氟丁基磺酸(PFBS)(C4)	0.00851	1.74	0.0139	76%	0.00534	1.10	0.00576	74%
全氟戊酸(PFPeA)(C5)	0.00092	4.13	0.00211	95%	0.00085	0.387	0.00250	83%
全氟己酸(PFHxA)(C6)	0.00068	8.99	0.00254	95%	0.00059	0.306	0.00373	100%
全氟己基磺酸(PFHxS)(C6)	0.00100	13.5	0.00134	76%	0.00077	1.11	0.00336	70%
全氟庚酸(PFHpA)(C7)	0.00092	1.54	0.00224	95%	0.00072	0.736	0.0008	100%
全氟庚烷磺酸(PFHpS)(C7)					0.00332	1.58	0.0076	26%
全氟辛酸(PFOA)(C8)	0.00093	6.57	0.00143	95%	0.00111	0.827	0.00185	100%
全氟辛烷磺酸(PFOS)(C8)	0.00090	97.1	0.00381	90%	0.00310	93.4	0.00733	83%
全氟壬酸(PFNA)(C9)	0.00073	0.399	0.00186	67%	0.000800	1.12	0.00171	83%

註:2023年另有調查全氟戊烷磺酸鹽 (C5)、全氟壬烷磺酸鹽 (C9)、全氟癸酸 (C10)、全氟癸烷磺酸 (C10)、全氟十一烷酸 (C11)、全氟十三烷酸 (C12)、全氟十三烷酸 (C13)、全氟十四烷酸 (C14)等8項全氟化物,惟最高檢出濃度均低於1 μg/L,故未列於表中。

國內飲用水PFAS調查結果(1/3)


■ 基於風險管理及預防,本部積極辦理飲用水新興污染物篩選作業及相關調查,掌握國內飲用水新興污染物現況,其中目前已將PFOA(106年)、PFOS(106年)及PFHxS(111年)納入觀察清單於國內淨水場抽驗,另近年亦針對新興全氟化物之替代物進行調查。

國際先進國家已列管或關注,科學文獻資料研究報告等,於飲用水中可能影響人體健康或公共衛生安全之物質

針對初蒐物質,過去國內曾有相關專案計畫依本土情形、重 大矚目環境事件等進行調查之物質

依物質之化學或物理特性制定不同評估原則,經評分依篩選機制,供專家委員評估後,納入清單之物質

針對觀察清單物質·經專家會議針對監測結果、處理技術及 分析成本等面項考量應列管之物質

環境部

1. 本土背景資料建立:

每年擇6-8項初蒐清單物質進行調查

2. 更新及評估各階段關注清單:每年另擇

26-28項末列管新興污染物物質抽驗

1 自來水事業

每年於32處淨水場,擇5-6項<u>觀察清單物質</u>, 進行一年四季監測

國內飲用水PFAS調查結果(2/3)

- 本部為掌握本土背景數據,自2016年起於國內淨水場清水,進行15項PFAS 濃度調查,包含:
 - 1. 全氟辛酸(PFOA)
 - 2. 全氟辛烷磺酸(PFOS)
 - 3. 全氟己烷磺酸(PFHxS)
 - 4. 全氟丁烷磺酸(PFBS)
 - 5. 全氟壬酸(PFNA)
 - 6. 全氟己酸(PFHxA)
 - 7. 全氟丁酸(PFBA)
 - 8. 全氟十一烷酸(PFUnDA)

- 9. 全氟庚酸(PFHpA)
- 10.全氟戊酸(PFPeA)
- 11.全氟戊烷磺酸(PFPeS)
- 12.全氟丙酸(PFPrA)
- 13.六氟環氧丙烷二聚酸(HFPO-DA)
- 14.全氟癸酸 (PFDA)
- 15.全氟辛烷磺(醯)胺(PFOSA)

國內飲用水PFAS調查結果(3/3)

- 彙整國內2016-2022年淨水場PFAS調查結果,除PFOA、PFOS、PFHxS外, 其餘12項全氟化物均未檢出,顯示我國飲用水中暫無顯著危害風險。
- 美國、歐盟或日本等國家已陸續訂定飲用水PFAS指引值或建議值,我國將 持續監測國內淨水場新興污染物,掌握本土現況資料,並蒐集國內外全氟化 物管制動態,評析納入飲用水管制標準之可行性。

04結論

結論

- ■持續針對PFAS調查潛在運作事業,掌握廢污水風險,以及 持續監測國內淨水場PFAS濃度,掌握本土資料。
- ■持續蒐集國內外PFAS管制動態,並依據調查結果分析,接 軌國際管制趨勢,評估檢討我國現行管制方式

▶感謝聆聽

敬請指教